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Using Auton’s force law for the unsteady motion of a spherical bubble in 
inhomogeneous unsteady flow, two key dimensionless groups are deduced which 
determine whether isolated vortices or shear-layer vortices can trap bubbles. These 
groups represent the ratio of inertial to buoyancy forces as a relaxation parameter 
17 = AU2/2gx and a trapping parameter r = AUI VT where AUis the velocity difference 
across the vortex or the shear layer, x is streamwise distance measured from the 
effective origin of the mixing layer and VT is the terminal slip speed of the bubble or 
particle. It is shown here that whilst buoyancy and drag forces can lead to bubbles 
moving in closed orbits in the vortex flows (either free or forced), only inertial forces 
result in convergent trajectories. Bubbles converge on the downflow side of the vortex 
at a location that depends on the inertial and lift forces. It is important to note that the 
latter have been omitted from many earlier studies. 

A discrete-vortex model is used to simulate the large-scale unsteady flows within 
horizontal and vertical mixing layers between streams with velocity difference A U. 
Trajectories of non-interacting small bubbles are computed using the general force law. 
In the horizontal mixing layer it is found that r needs to have a value of about 3 to 
trap about 50 % of the bubbles if I7 is about 0.5 and greater if 17 is less. The pairing 
of vortices actually enhances their trapping of bubbles. In the vertical mixing layer 
bubbles are trapped mainly within the growing vortices but bubbles are concentrated 
on the downflow side of the vortices as r and 17 increase. In a companion paper we 
show that lateral dispersion of bubbles can be approximately described by an advective 
diffusion equation with the diffusivity about equal to the eddy viscosity, i.e. rather less 
than the diffusivity of heat or other passive scalars. 

1. Introduction 
Observations of the motions of bubbles in air-entraining flows by Thomas (see 

Goldring, Mawer & Thomas 1980; also Thomas 1982) and in the wakes of bluff-body 
flows ( H u h ,  Fierfort & Coudol 1982) have revealed the phenomenon of bubbles 
travelling in discrete clusters within free shear layers. This behaviour (figure 1, taken 
from Goldring et al.) has been attributed to the presence of large-scale coherent eddies. 
In the present paper we seek to determine the influence of such coherent structures on 
the distributions of bubbles in free shear layers, using theoretical models and computer 
simulations. The plane coflowing turbulent mixing layer was chosen as a model field 
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FIGURE 1. Photograph of air being carried underwater in the shear layer at the edge of a plunging jet. 
Depth of the jet about 2 cm; impact velocity about 2 m s-l. (Photograph courtesy of Mr B. T. 
Goldring, CERL, Leatherhead.) 

because of its advantages of simple geometry and extensive previous studies (e.g. 
Brown & Roshko 1974; Wood & Bradshaw 1982). 

The physical mechanisms that lead to the trapping of bubbles by coherent structures 
can be explored by modelling the flow as a travelling vortex with a rotational core (see 
figure 2). This representation is suggested by visualizations of single-phase mixing 
layers (e.g. Brown & Roshko 1974) in which the coherent structures appear as roughly 
cylindrical blobs of rotational fluid connected by thin braids of turbulent fluid. The far- 
field flow induced by an isolated cored vortex approximates that induced by a line 
vortex. The motions of bubbles in the neighbourhood of a line vortex have been 
computed by Auton (1983), as first reported in Thomas et al. (1983), and later extended 
as described in Auton, Hunt & Prud’homme (1988). Following standard practice, 
Auton expressed the resultant force acting on a bubble as the sum of separate and 
uncoupled contributions from inertial effects (i.e. pressure gradient and added mass), 
buoyancy, drag and lift. He showed how entrapped bubbles spiral in towards the centre 
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FIGURE 2. Sketch showing the representation of a two-stream planar mixing layer as 
a succession of travelling cored vortices. 

of a line vortex as a result of the radial (centripetal) pressure gradient in the flow. In 
$2 we discuss the force law in detail and with particular reference to cored vortices akin 
to coherent structures in the turbulent mixing layer. Our hypothesis is that bubbles 
might be trapped in the radial pressure gradients which the coherent structures induce 
in the irrotational flow outside the mixing layer. 

Once a bubble has entered a coherent structure it continues to move around under 
the influence of inertial, drag, buoyancy and lift forces. The motion may also be 
affected by other factors, such as the dispersive effects of small-scale turbulence carried 
within the structure and the pairing and tearing of the structures which has been 
observed in single-phase flows (e.g. Brown & Roshko 1974). It is necessary to 
understand the roles of these factors before we can make reliable estimates of the 
distributions of bubbles in turbulent mixing-layer flows. 

Studies of the effects of drag, lift and inertial forces on the motion of bubbles in 
vortices have been made in connection with the transport of sand by the vortices shed 
from the crests of sand ripples (Tooby, Wicks & Isaacs 1977). Using a Rankine model 
of cored vortex flow (i.e. a circular disc of uniform vorticity), Tooby et al. showed that 
bubbles describe circular orbits as governed by a balance of drag and buoyancy forces. 
The effect of inertial forces is to cause bubbles to spiral in towards the centre of these 
circular orbits (Nielsen 1984; Sene 1985). In $$2 and 3 we develop these simple models 
in more detail as an aid to understanding qualitatively how inertial and turbulent 
dispersive forces affect the distribution of bubbles in mixing-layer vortices. 

A more realistic representation of the evolving vorticity in the turbulent mixing layer 
can be achieved with the discrete-vortex modelling approach. This method is well 
established as a means of calculating large-scale unsteady aspects of free shear flows; 
see the review by Leonard (1980). It produces instantaneous patterns that look 
strikingly similar to those observed experimentally, including such features as the 
growth by pairing of clustered vorticity (i.e. coherent structures). Thus it seems most 
natural to apply this method to the study of discrete-phase dynamics in the mixing 
layer. Some preliminary results have already been presented by the authors in Thomas 
et al. (1983). Other workers have used the method to study the motions of particles in 
axisymmetric jets (Chein & Chung 1987; Chung & Troutt 1988), of passive 
contaminants in mixing layers (Thies & Peters, cited by Peters & Williams 1980) and 
of flame fronts in the lee of a backward-facing step (Ghoniem, Chorin & Oppenheim 
1983). In $4 we describe how the method can be used in conjunction with the force law 
for bubble motion to estimate the effects of orientation with respect to gravity and of 
inertial and vorticity forces on bubbles in plane mixing layers. The results of the 
simulations appear in $5. 

8 FLM 259 
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2. Theoretical considerations 
2.1. Equation of motion 

Auton’s (1983) formulation of the equation of motion differs from previous work (e.g. 
So0 1967; Wallis 1969) in that vorticity lift forces are incorporated and the added mass 
forces are represented correctly; see Thomas et al. (1983). The generalized force law, 
analysed and further justified by Auton et al. (1988), leads to the following equation 
of motion for bubbles: 

- 2 C , w x ( V x u ) ,  
dv 3Du 
dt Dt 
- = -- 

where u is the liquid velocity, v is the bubble velocity and w = u-u is the relative 
velocity, V, is the rise speed in still water and C, is the lift coefficient of the bubble in 
uniform shear; C, = 0.5 for a spherical bubble (Auton 1983). The D/Dt operator 
denotes the total derivative following the liquid motions and the drag functionfTw/ V,) 
is assigned as described below. 

The terms on the right-hand side of (1) represent the contributions to the bubble’s 
acceleration from inertial forces (i.e. pressure gradient and added mass), buoyancy 
forces, drag forces and lift forces respectively. Several assumptions made in its 
derivation are discussed fully in Thomas et al. (1983). In summary, we believe (1) 
provides a sensible description of the most important forces affecting the motion of 
small spherical bubbles (up to 2 mm in diameter, say) at high Reynolds numbers based 
on V. as representative slip speed in weakly inhomogeneous rotational flows. For 
simplicity of computations we have supposed a linear drag law (i.e. f = 1). 
Measurements (reviewed in Clift, Grace & Weber 1978) of the terminal speed of small 
bubbles about 2 mm in diameter rising through water show that V, is about 20 cm s-l, 
a value adopted throughout in our calculations. Sene (1985) has shown the results are 
not much affected by the particular choice of drag law provided that the same value 
of V, is used. 

2.2. Limiting behaviour 
It is helpful to estimate the orders of magnitude of the various forces acting on a bubble 
travelling in a coherent structure. For a plane mixing layer with velocity difference AU 
and thickness 6 at a distance x from its origin, the terms on the right-hand side of (1) 
have the following magnitudes (per unit mass of liquid): 

Inertia - A U 2 / 6 ;  Buoyancy - g ;  Drag - gW/V,;  Lift - C, W(AU/S),  

where W is characteristic of the slip speed (see below). To understand the relative 
effects of these terms, it is convenient to introduce as parameters the inertia-to- 
buoyancy ratio ( l / B ) ,  17, and the lift-to-drag ratio (LID), n/r, where we define 

17 = AU2/2gx.  (2  a) 

Here the factor 2 appears for convenience and S has been assumed proportional to x 
as is appropriate for the turbulent plane mixing layer. Since the ratio of lift-to-drag 
forces is of order AUV,/gS, for convenience we choose the second independent 
parameter r to represent the ratio of rotational trapping velocities to the bubble rise 
velocity : 

As we shall see, the parameter r effectively measures how well the vortex can trap 

r = AU/V,. (2 b) 
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Bubble trajectory 

FIGURE 3. Sketch showing the trajectory of a bubble moving inside a Rankine vortex 
according to equation (4b). 

t t Y  

FIGURE 4. Sketch showing the trajectory of a bubble moving inside a Rankine vortex 
according to equation (5). 

bubbles and hence it sets the magnitude of W in the vortex. If r < 1, there is no 
trapping and W = VT. But if r % 1, then W = AU, so that for strong shear (or 
small rise speed), the lift forces are then comparable with the inertial forces since 
L / I  M W A U / A U 2  M 1. But if 6 1, then L / I  - VJAU M l/r >> 1, so for weak shear 

8-2 
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layers, the lift force is then large compared with the inertial forces. On the other hand, 
it has a small effect because the bubbles slip quickly through the vortices. 

When 17 < 1 and 17/r < 1, both the inertial and lift forces are negligible compared 
with the buoyancy and drag forces and then (1) reduces to 

u-u = w z - V,g/g. (3) 

In this limit, the bubbles are transported as in a uniform flow of liquid at velocity u. 

3. First estimates of motions and concentrations 
As a first approximation, coherent large eddies in a turbulent mixing layer can be 

represented as a succession of independent travelling cored vortices. Simplifying the 
picture in the interests of basic understanding, we begin by considering how bubbles 
move inside a single horizontal vortex of uniform section and vorticity Q (i.e. a 
Rankine vortex). More realistic patterns and distributions of vorticity could be 
employed but the complexity of the analysis would mask the essential details. We then 
deduce the mean concentration profiles in mixing-layer flow, here assuming that the 
concentrations are so low that the bubble motions are sensibly independent of one 
another. 

3.1. Limit of small 17 
Consider first the limits 17+0 and 17/r+O. In this case, the local slip speed 
approximately equals the terminal rise speed and a bubble with vector coordinate X 
executes a circular motion defined by (with C, = i) 

do)  = dX/dt = - V, g / g  - X x D, (4 a) 

the solution for which is 

X = [X,, - ( VT/gQ2) g x a] cos (Qt)  - Q-'[X, x D + V, g / g ]  sin (Qt)  

+ ( V,/,/gQ2) g x 51, (4 b) 

where X,, = X ( t  = 0). Equation (4b) defines a circular orbit located horizontally off- 
centre from the vortex axis at V,g x D/gQ2 (i.e. a distance V,/Q for a vortex with a 
horizontal axis; see figure 3). This result has been discussed and applied by Tooby 
et al. (1977). 

If weak inertial and lift forces (i.e. such that 17 4 1) are now considered to perturb 
this orbit with linearized perturbation velocity u ( l ) ,  then initially we have 

u( l )  = (V,/g) [ - $ 2 r + ~ ~ z i - C L ( u ( o ) -  u) x a1, ( 5 )  

where r is measured from the vortex centre and i from the orbit centre. If initially 
r > V,/Q, the particle slowly drifts towards the centre of the vortex because the radial 
pressure gradient (the term in r in (5 ) )  is larger than the centrifugal acceleration (the 
term in i )  and the lift term which acts horizontally; see figure 4. These terms become 
comparable when the radius of the orbit is of the same order as the orbit displacement, 
i.e. when Y = V,/Q. Eventually the bubbles converge to an equilibrium location where 
there is a balance of the horizontal lift force C, V,(g/g) x D and the radial acceleration 
$Pr. This equilibrium position is defined by 

(6 4 re = fC,( V , / g 0 2 )  g x 0. 
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For a horizontal vortex, then, 
re % 0.3VT/0 
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on the downflow side. Note that this equilibrium point is defined independently of the 
relative strength of the inertia-to-buoyancy forces 17, provided that the vortex is just 
strong enough to trap the particles, i.e. r > 1. Note also that the location of this point 
does not depend on the drag law but it does depend on the value of the lift coefficient. 
This conclusion differs from that obtained by Nielsen (1984) who ignored the lift force 
and based his calculations on an incorrect expression for the added mass. 

3.2. Limit of large 17 
It is also worthwhile to consider the case where the bubble moves entirely under the 
action of inertial and lift forces in the vortex flows, with the buoyancy and drag forces 
being negligible, i.e. when 17+ co. Then, from (l), 

(7 4 
Therefore in this limit too the radial pressure gradient encourages bubbles to travel 
towards the centre of the vortex. There is only an equilibrium position at the vortex 
centre if the bubble is placed there with zero velocity. If the bubble is released anywhere 
else it does not reach the centre of the vortex but executes oscillations. This limit is not 
really of much practical interest. 

dv/dt = - 3Q2r - 2C,(v - r x SZ) x 0. 

3.3. Limit of small 17 and large r 
The outer part of a coherent structure is similar to the outer free vortex zone of a 
Rankine vortex. Auton (1983) has shown that when bubbles are released in the vicinity 
of a free vortex of circulation K ,  there is a single trajectory (of maximum radius K /  V,) 
on which the bubbles can move in a closed orbit in the limit I7+0 and I7/r+O. In 
general, bubbles are trapped in vortices if they are released inside a certain width 
which, for weak vortices, is proportional to the ratio K/V,. Thus a Rankine vortex 
possessing core radius R, can only trap bubbles if ~/2.nR, > V,, that is if the 
maximum vortex flow speed U,  > V,, equivalent to r > 1. 

We can now conjecture that in a typical coherent structure with U, - +AU, the 
bubbles are trapped if U,  > V,. When trapped, they move on circular trajectories, 
concentrating on the downflowing side at a distance between 0.3 and 1.0 times 
V, R / U ,  from the centre of the structure. This corresponds to the high-speed side in a 
downflowing free shear layer when, since R % iS and S M bx  (where b is the spread rate 
coefficient), the accumulation locus of the bubbles is approximately r / x  = bV,/AU. 

3.4. Incorporating turbulent dispersion 
This aspect will be considered in detail in a companion paper (Sene, Thomas & Hunt 
1993). For completeness of the present account we mention here key points in the 
representative case with 17 Q 1, when the radial convergence velocity of bubbles 
towards the centre of a coherent structure is given by 

dr V,AUz r 
- = - Upr with positive Up, K - - r  K V, 17-. 
dt g sz X 

In a real coherent structure, this radially inwards motion would be opposed by the 
outwards dispersive effects of small-scale turbulence. Current ideas about the dynamics, 
as reviewed by Hussain (1983), are that the intensities rise to a peak near the centre and 
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drop to a small value at the edge, such that contours of turbulence intensity are roughly 
symmetric about the centre. Consistent with these results, we might represent their 
effects on the motions of small bubbles by a diffusion coefficient Kpr,  say, whose local 
distribution depends only on radial position inside the coherent structure. Thus, with 
6 K x, we can write 

Kp,/AU = xh(r/x), (8) 

where h is some (unknown) function of r/x. The bubble concentration C,, say, inside 
the coherent structure is then given by 

Up, C,  = Kpr aC,/c?r. (9) 

With C,(O) = CTO, substitution of (7b) and (8) in (9) gives 

where p = r/x and a prime denotes a dummy variable of integration. This result 
indicates that bubble concentrations inside a coherent structure are increasingly 
confined as 17/rincreases. However, in view of the declared restrictions on our bubble 
dynamic model and of the acknowledged limitations in diffusivity modelling of 
turbulent dispersion, this finding is probably best regarded as no more than a scaling 
guideline. 

The concentrations given by (10) can be related to the concentrations in an Eulerian 
frame of reference by means of an intermittency function 7 = ~ Y ( T ) ,  where 7 is the 
mixing-layer similarity variable y/x (e.g. Townsend 1976). This method of relating 
Lagrangian to Eulerian results has been used previously by Fiedler (1974). The 
intermittency distribution is defined by instantaneous y = 1 in turbulent fluid and y = 0 
in non-turbulent fluid; the bar denotes statistical averaging. Measurements of the 
intermittency distribution across turbulent mixing layers (e.g. Fiedler 1974) suggest 
that 

Y(T)  = exp (- W),  (1 1 4  

where P is a constant. Bubble concentrations C in an Eulerian frame are then given by 

Inspection of (9) and (10) shows that the main findings about the form of the 
C,-profiles should then apply equally to the C-profiles. 

4. Computer simulations 
We now describe our method for calculating ensemble tracks of bubbles in the 

mixing layer simulated by a discrete-vortex method, using (1) to represent the motions 
of the bubbles. It is assumed that the bubbles are small enough and in low enough 
concentrations that they do not affect the flow or each other. The discrete-vortex 
algorithm used here is described in 54.1. The main output from these calculations is the 
vorticity distribution of the flow in discrete form. Section 4.2 describes our procedure 
for generating and smoothing this spotty flow field so as to recover sensible estimates 
of the velocity gradients for use with the bubble dynamic equation (1). The flow-field 
results appearing in 94.3 are then applied to calculations of the bubble transport as 
described in 94.4. 
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FIGURE 5. Definition sketch for discrete-vortex simulation of a two-stream planar mixing layer. 

4.1. Mixing-layer flow 
Many different formulations of the discrete-vortex method have been proposed (e.g. 
see the review by Leonard 1980) and recent developments (e.g. Ashurst & Meiburg 
1988) have even extended to simulations of the three-dimensional eddy structure in 
plane shear flows. However, for the present purpose of demonstrating key basic 
features of bubble transport by large eddies, we employ the simpler two-dimensional 
representation essentially as described by Ashurst (1977) but incorporating a vortex- 
in-cell scheme (Spalart & Leonard 1981) to reduce computational overheads. 

Important features of the model are sketched in figure 5 :  note that the flow is 
assumed to be inviscid and two-dimensional. The vorticity shed from the origin of the 
mixing layer (x = 0) is represented in discrete form by a sequence of point vortices. The 
strength of each point vortex is chosen to be AK = AU OAt, where At is the time step; 
this reproduces the correct vorticity influx to the mixing layer. The point vortices move 
under the influence of the mean velocity field U and the velocity field induced by all the 
other point vortices in the flow. Point vortices are removed from the flow at the 
downstream end of the computational domain (x = L) chosen so as to limit the total 
number of vortices and hence the computational time required. The exiting vortices in 
x > L and the attached sheet on the splitter plate in x < 0 are both represented as 
bound vorticity. Following Leonard (1980), the simulation is started by placing the 
downstream bound vortex at x = 0 and then moving it downstream at a velocity U 
until it reaches the chosen location of x = L. The simulation is advanced at each time 
step by a simple Euler predictive scheme x,+~ = x, + u, At. Vortices are released into 
the flow at the position x = L / N ,  where N is the average number of vortices in the 
simulation. Note that the boundary conditions on the splitter plate in x < 0 are not 
satisfied correctly, nor is the vorticity downstream of x = L represented correctly, so 
the simulation is only approximately valid in the computational domain 0 < x < L. 

4.2. Numerical considerations 
The discrete-vortex method may provide a formal solution to the Euler equations in 
the limit N-t  00 although this is still a moot point: see Moore (1981). However, as 
posed, the model is inherently unstable and overpredicts the turbulence intensities. 
Also, an inordinate amount of computer time is needed to attain stationary statistics. 
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Several ad hoc devices are available to overcome these problems, as discussed below. 
Their only justification is pragmatism - namely, for the purpose of calculating the 
bubble trajectories, it suffices to use a flow field that sufficiently resembles the real 
turbulent mixing layer, without necessarily being an exact solution of the flow 
equations. 

Numerical instabilities arise because the induced velocity is singular at the centre of 
each point vortex. This produces unrealistic results when vortices approach each other 
too closely and are expelled at high velocity from the computational domain. Such 
behaviour can be suppressed by including a finite core size in each vortex (Chorin 
1973). Chorin's device is employed here and the core model used is uo = :AU on 
r = ro where re is the core radius and uo is the spin component velocity. The radius re 
is taken arbitrarily as 0.5LIN. More complicated core models may be justified 
heuristically but they do not appear to systematically improve the calculated flow field 
(Leonard 1980). 

A plausible reason for the overprediction of turbulent intensities by the discrete- 
vortex model is that, being two-dimensional, the method does not represent energy 
transfer into the third component, either as large-scale motion or as fine-scale turbulent 
scrambling. Ashurst & Meiburg (1988) have explicitly studied this effect in modelling 
the plane mixing layer as a collection of vortex filaments. In the present two- 
dimensional simulations, artificial diffusion is used to mitigate this deficiency. The 
diffusion is included as a Gaussian random jitter on the motion of each vortex, 
according to the following time-stepping scheme : 

x , + ~  = x,+u,At+C,  

where [ is the (isotropic) vector jitter with standard deviation c expressed here as 
a fraction of the average distance moved by each vortex in each time step - that is, 

= eUAt.  The effect of the modelling coefficient c on the results of a mixing-layer 
simulation were investigated by Kiya, Arie & Harigane (1980), using 100 vortices in 
the computational domain. Close agreement with measured values of the turbulent 
intensities was obtained only for such large values of e, i.e. 8 - 1, that the jitter 
completely obliterated the coherent structures. In the present simulations, lower values 
of e were used in order to retain the structural features. 

The time required for a simulation increases as N z  which, in practice, imposes a 
serious constraint on the number of vortices that can be used in the simulation. 
Computing times were reduced in the present calculations by an approximate scheme 
based on the work of Spalart & Leonard (1981). According to this algorithm, a mesh 
is superimposed on the computational domain so that each vortex can be assigned to 
a cell at each time step (figure 6a) .  The velocity induced by vortex interactions for a 
separation distance x,, say, is then expanded as a Taylor series in the separation 
distance xb between the cells in which the vortices are located. Errors are limited by 
taking sufficient numbers of terms in the Taylor series. In the present work, a simpler 
scheme was found to be satisfactory; see figure 6(b). Interactions between vortices in 
the same cell and adjoining cells are computed exactly but all other interactions are 
calculated as if the vortices were located at the centres of their cells. For a cell size 6, 
the maximum error in estimated velocity due to any one interaction is of order A K / ~ ~ c S ,  
so the position error at the next time step is then of order A ~ A t / 2 . n & .  In practice, 
provided that the cells are small compared with the coherent structures, these errors 
tend to cancel because the vortices are essentially randomly distributed within the cells. 
Also, the error term is always very much less than the imposed random jitter 6'. 
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FIGURE 6. Approximate schemes for calculating point-vortex interactions : (a) Scheme of Spalart & 
Leonard (1981); (b) scheme used in the present study. In (b) the interactions between the vortices in 
cell A and those in the shaded cells are calculated exactly and the remainder are calculated 
approximately. 

The approximate scheme for computing vortex interactions was tested in a 320- 
vortex simulation of a single-stream mixing layer. Vortex positions and the time- 
averaged velocity field were calculated using both the exact and the approximate 
schemes. There was little difference between the results but the exact scheme required 
about 2 s of run time whereas the approximate scheme took about 0.4 s to advance the 
simulation by one time step on the University of Cambridge IBM 308 1 computer. The 
cell size was arbitrarily set to 0.05L and further reductions in run time could have been 
achieved by optimizing the cell size. 

4.3. Flow-field calculations 
A two-stream mixing layer with velocity ratio U,/U, = 3 was chosen for this test so as 
to match the conditions of the experimental study described in Sene et al. (1993). The 
average number of vortices in the simulation domain was chosen to be about 500. The 
cell size used was 0.016L (optimized on minimum runtime) with two jitter values: 
c = 0.2UAt and 0.4UAt. Each simulation was run for 5000 time steps. A sequence of the 
vortex positions at time intervals of 0.2LlAU is shown on figure 7 for the simulation 
with jitter c = 0.4UAt. The vortices cluster into groups that closely resemble the 
coherent structures observed in turbulent mixing layers. The density of these vortex 
distributions gives a qualitative idea of the vorticity concentrations in the large 
features. 

Mean velocities calculated from this simulation are shown in figure 8(a). 
Measurements by Wood & Bradshaw (1982) show that the mixing-layer width, defined 
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FIGURE 7. Positions of point vortices in the discrete vortex simulation of a two-stream planar 
mixing layer at times: (a) 2.2LlAU; (b) 2.4LlAU; (c) 2.6LlAU; ( d )  2.8LlAU. 

as the distance between the points at which the velocity differs by 0.5 YO from the stream 
value, is about 0 . 2 2 ~  for single-stream layers. Since the width also scales in proportion 
to the ratio AU/U (Townsend 1976), a mixing layer with velocity ratio of 3 would be 
expected to spread as 0.1 lx, approximately. Our simulations with 0 . 1 4 ~  slightly 
overpredict this value, although not by much more than the typical uncertainty of 
f 2 0 % .  

The shapes of the turbulence intensity profiles appearing in figures 8 (b) and 8 (c) are 
in reasonable agreement with experimental measurements (e.g. Wood & Bradshaw 
1982). The latter show peak values of the r.m.s. u' and u' components that are about 
0.18 and 0.14 of the shear velocity AU, irrespective of the velocity ratio. The peak value 
of the Reynolds shear stress is about 0.013AU2 according to measurements and 
this value, like the peak r.m.s. u', is reproduced rather well by the calculations; see 
figure 8 (4. However, the peak r.m.s. v' is overestimated by about 30 YO with r.m.s. jitter 
6 = 0.4UAt, a mismatch that increased the r.m.s. jitter was halved. For this reason, we 
fixed the jitter coefficient at 0.4 for all subsequent calculations of the bubble transport. 
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FIGURE 9. Vorticity distribution in the discrete-vortex simulation at time 2.4LlAU: 
(a) AX,, = 1.75UAt; (b) AX,, = 3.50UAt; (c) AX,, = 5.00UAt; ( d )  AX,, = 7.50UAt. 

4.4. Calculations of bubble motion 
The single-phase simulations, developed as described above to provide a reasonable 
compromise between retention of large structure features and reproduction of 
measured values of the statistical properties, were used for all the bubble calculations 
reported here. For the computational work, it proved convenient to scale all velocities 
on the shear velocity AU and all lengths on L, the length of the computational domain. 
The resulting dimensionless version of (1) governing the bubble dynamics is then 

(12) 

where i7 = v/AU, ii = u/AU and t"= t A U / L .  The two parameters V,/AU and 
AU2/2gL  (i.e. l /Tand n) must be specified before (12) can be evaluated. The velocity 
u and the spatial gradients u.Vu and V x u are estimated from the discrete-vortex 
simulations. The latter values were initially calculated from analytical expressions for 
the vortex-induced velocity fields but these estimates were found unsatisfactory 
because of unrealistically large excursions associated with individual vortices. The 
difficulty is illustrated by figure 7 : whilst the vortices label the large-scale structures, 
they do not give a realistic representation of the approximately uniform vorticity 

di7/dt"= 3Dii/Dt"-17-1[g/g-~(fi-ii)]-2C,(i7-ii) x (V x ii), 
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within the structures. To eliminate this difficulty, the gradients were smoothed via a 
curve fit to the velocities at several nearby points, the latter obtained from averaging 
over a few time steps prior to the fitting. Thus the time step used for the bubble 
calculations (At, say) exceeded that used for the mixing-layer simulations. The curve 
fitting procedure and the size of the time step At, were developed from a model 
problem of bubble transport in a Rankine vortex. The velocity gradients, including 
those for vorticity, and the bubble trajectories in the Rankine vortex (see $ 3 )  were 
calculated analytically and then compared with the results of discrete vortex 
calculations using several numerical smoothing schemes (as described in Sene 1985). 
The following method was found to be the most satisfactory and was adopted for all 
the bubble calculations reported here. 

Derivatives of the velocity at a point x,, (say) were estimated by fitting a least-squares 
line to the velocities (averaged over At,) at the points x,, + n Ax,,, where integer n runs 
from - 2 to + 2. An appropriate value for Ax, was determined from an examination 
of the field smoothing of vorticity obtained with this algorithm. Figure 9 shows the 
vorticity distributions at a time T = 2.4L/AU for several different values of Ax,,. The 
detailed structure relating to individual vortices can be distinguished at the lowest 
value of Ax, = 1.75UAt but this is progressively removed as Ax,, is increased. Notice 
that for all the values of Ax, shown here, the main features of the vorticity distributions 
are strikingly similar to those observed experimentally (Wygnanski & Weisbrot 1988). 
Indeed, peak values of vorticity in the coherent structures (Hussain 1983) are roughly 
twice the maximum value of the mean velocity gradient au/ay and this ratio is 
recovered when Ax,, = 5UAt is selected. Accordingly, a filter coefficient of 5 was 
adopted for all subsequent calculations. Consistent with this tuning, the bubble time- 
step coefficient was also set to 5 (i.e. At, = Ax,,/U strictly as appropriate for 
equilibrium transport) in all of the subsequent calculations. The time derivatives of the 
velocity field were estimated in the same way: au/at was assigned by least-squares 
fitting the velocity record at a fixed point over the time interval At, (i.e. five-point 
smoothing). 

5 .  Results 
Several important aspects were simulated, as follows. 
(a)  The effects of velocity difference across the shear layer on the escape of bubbles 

from horizontal flow. Recall that the single-vortex model of 93 suggested that trapping 
occurs if r = AU/ V, > 2 and that trapping is intensified by the action of inertia forces. 

(b) The effects of pairing of coherent structures (as is observed experimentally, e.g. 
Brown & Roshko 1974) on the escape of bubbles from horizontal flow. Our 
preconception was that the flow disruption during pairing might encourage the escape 
of bubbles from the mixing layer. 

(c) The effects of inertial forces on the distribution of bubbles in vertical downflows. 
Recall that the single-vortex model of $ 3  suggested that inertial forces cause the 
bubbles to drift toward the high-speed side of the mixing layer in downflow. Vertical 
downflow was adopted because buoyant slip of the bubbles is partially countered by 
the opposing flow, thereby affording simplifications both in the interpretation of the 
simulations and in their experimental realization. 

For all of the results described below the model bubbles were released with initial 
velocity equal to the vector sum of the local flow and the bubble rise velocities. 
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, ,I’ Bubble trajectory 

0,’ 

Release point 
( 0 . 0 5 ~  yo) 

FIGURE 10. Sketch showing how the release point was calculated for use in the simulations. The dotted 
line shows the trajectory that a bubble rising at velocity V, would follow in the absence of the mixing 
layer. 

FIGURE 1 1 .  Simulation of bubble trajectories in a horizontal mixing layer. 20 bubbles with 
I7 = 0.5, r = 3.3. (Note: gravity acts upwards here.) 

5.1. Escape of bubbles from a horizontal mixing layer 
The bubbles were introduced into the flow at coordinate (O.O5L, yo) with a time interval 
of 200At between each bubble. The value of yo was selected such that the bubbles would 
travel through the point (0.5L,O) in the absence of the mixing layer, i.e. due to 
advection and slip. The determination of yo  is portrayed on figure 10. Having yo as a 
parameter allows direct comparison of the results for different values of r since the 
bubbles then experience similar velocity histories whilst travelling in the mixing layer. 

Figure 1 1  shows the bubble trajectories when I7 = 0.5 and r = 3.3. Notice that 
gravity is directed upwards here so the bubbles are rising towards the bottom of this 
picture! Viewed in a fixed frame, these trajectories follow cycloidal paths within the 
coherent structures. In this simulation approximately half the bubbles were entrained 
into the mixing layer and remained trapped throughout the computational domain. 
The escape probability P is thus about 0.5 here. The dependence of P on 17 and r is 
displayed on figure 12 where each data point represents expectations based on the 
histories of 20 bubbles. These results show that high values of 17 inhibit escape, 
consistent with physical expectations of inertial confinement. Similarly, increasing 
values of r discourage escape, again as expected. 

Bubbles appear to have zero probability of escape when l / r  = VT/AU is less than 
about 0.05, irrespective of 17. This result can be attributed to the downstream spread 
of the mixing layer, the time-averaged edge of which has locus y / x  z f0.07 in our 
simulations, so bubbles cannot escape when V,/U, < 0.07, or VT/AU < 0.035 here 
(with AU/U,  = 2), a condition not far removed from that found with the simulations. 

The conditions for which P = 0.5 can be adopted as a measure of criticality for 
trapping. From figure 12 we see that this parameterization yields critical values of 
l / r  = 0.1 1,0.19 and 0.30 when I7 = 0,0.05 and 0.50. These results might be compared 
with measurements by Shibiyama & Horikawa (1980) of sand-grain trapping in 
vortices. They found that the maximum velocity (Urn, say) induced by sand-ripple 
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FIGURE 12. Calculations of the probability of bubbles escaping from a horizontal mixing layer: 
@,, 17 = 0 ;  0, 17 = 0.05; 0, 17 = 0.5. 

vortices occurs close to the bed. All sand grains were observed to be trapped when 
V,/U, < 0.15 and none when V,/U, > 0.25, where VT here is the terminal fall speed 
of the grains. With our parameterization above, this corresponds to a critical condition 
somewhere in the interval 0.15 and 0.25. Supposing that U,  corresponds roughly to 
iAU, their trapping condition then relates to l/rbetween 0.075 and 0.125, as compared 
with our finding (for bubbles in a plane mixing layer) that P = 0.5 when l/r is about 
0.11 ; we take 17 = 0 since inertial effects are not significant for sand-grain motions 
(Nielsen 1984). Thus there does seem to be similarity between the conditions for 
trapping in these two flows. 

5.2. Eflects of coherent-structure pairing 
We expected that flow disruption during pairing events would encourage the release of 
bubbles. Two simulations were run to look at this aspect with the aid of the pairing 
event displayed on figure 7. Values of 17 = 0.5 and l / I '  = 0.1 were chosen for the first 
simulation and 17 = 0 and l / r  = 0.2 for the second. In each simulation, fifteen bubbles 
were introduced along the line y = O.O2L, directly below the two eddies participating 
in the event. 

The results are displayed in figure 13. Bubble locations are shown at times 
corresponding to the vortex position pictures of figure 7. Again we caution that gravity 
is directed upwards in these figures. What this test establishes is that there is little 
evidence of pairing having any significant effects on the trapping behaviour. We found 
P = 0.07 and P = 0.60 respectively in the two simulations, values that correspond 
closely with those obtained for the long-term (i.e. undiscriminated) expectations; see 
figure 12. The reason is probably that the contours of vorticity, although distorted, 
persist throughout the pairing event, so the local flows resemble those of a growing 
isolated eddy with closed, roughly circular, streamlines. 

A striking feature of the simulation with 17 = 0.5 is the pronounced clustering of 
bubbles within the eddies, demonstrating the trapping effect of inertial forces. Contrast 
this behaviour with that of the case 17 = 0, shown in figure 13 (b). Our findings here are 
consistent with those obtained from the isolated-vortex model described in 93. More 
detailed consideration is given to this behaviour in the following section. 
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FIGURE 14. Calculations of bubble concentration fluxes in a vertical downflowing mixing layer. 
N ,  (= 40) bubbles were released into the high-speed stream in the region 0 < y < 0.135 : (a) 17 = 0,  
r = 5 ;  (b) n = 0.067, r = 5. a, = 0 . 2 ~ ;  0, = 0 . 4 ~ ;  0, x = 0 . 6 ~ ;  0, x = 0 . 8 ~ .  

5.3. Bubble distributions in vertical downjows 
The model bubbles were introduced into the high-speed stream close to the origin of 
the mixing layer, in particular along the line x = 0.05L and at random locations 
0 < y o  < 0.135L. The time step here was 100At and groups of ten bubbles were 
followed in each of two simulations, both with l/r = 0.2, the first having 17 = 0 (zero 
inertial forces) and the second 17 = 0.067, corresponding to the conditions of our 
experimental study (Sene et al. 1993). A total of 360 bubbles was tracked in each 
simulation, requiring about 20 minutes of computing time for the case 17 = 0 and 
about 2 hours for the case I7 = 0.067. Bubbles introduced outside the mixing layer (i.e. 
y ,  > 0.10) were hardly affected by the vortex motions over the length of our 
computational domain, so we are confident that the downstream concentration profiles 
within the mixing layer are representative of those found with bubbly flow extending 
across the high-speed stream (i.e. for all yo > 0). 

The number of bubbles crossing unit area per unit time (i.e. the concentration flux) 
was calculated at downstream stations x / L  = 0.2, 0.4, 0.6 and 0.8. Smoothed profiles 
of the bubble fluxes were calculated using ensemble averaging to accommodate the 
special initial conditions of blockwise release rather than continuous streaming. The 
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flux profiles presented here correspond to ensemble averaging over a streamwise 
interval of k 0.1 L adjoining each station. This box size was deemed acceptable because 
the bubbles travel an average distance of 0.2L between the introduction of consecutive 
bubbles. 

The flux profiles from the simulation with 17 = 0 and r = 5 appear on figure 14(a). 
Notice that they are antisymmetric about the centreline and possess shapes and spread 
rates similar to the mean velocity profiles of the single-phase mixing layer (figure 8). 
This self-preserving property is a classical result for passive transport, so our finding 
suggests that a small slip velocity ( l / r  = 0.2) does not significantly modify expectations 
based on passive behaviour. The profiles from our second simulation (17 = 0.067, 
r = 5.0) appear on figure 14(b). Notice that whilst these are also self-preserving, they 
are now skewed towards the high-speed stream, consistent with expectations for the 
effect of inertial drift in vertical downflow; recall our earlier results of $3. On the other 
hand, approximate self-preservation was not anticipated so this is regarded as a key 
finding of the present study. 

6.  Conclusions 
Simple models of bubble motions in isolated-vortex flows have been described as an 

aid to understanding the role of coherent structures in mixing-layer transport of 
bubbles. The model results, supported by discrete-vortex simulations of the bubble 
trajectories, indicate that the following characteristics contribute to determine the 
trapping effects of large eddies in these turbulent shear flows. 

First, bubbles are trapped in horizontal mixing-layer flow once the parameter 
r= AU/V, exceeds a critical value ranging from about 10 when inertial forces are 
weak (17+0) to about 3 when the inertial forces are comparable with buoyancy 
forces (17 - 0.5). Pairing of shear-layer vortices does not significantly affect the 
local bubble concentrations and it may even enhance their trapping power. 

Secondly, bubbles are also trapped in vertical mixing-layer flow and the 
concentration profiles are skewed toward the high-speed stream in downflow when the 
inertial-buoyancy parameter 17 = A U 2 / 2 g x  exceeds about 0.05. The effect is enhanced 
by lift forces due to slip motion of the bubbles in the shear flow. Because of this 
skewing, it is not strictly reasonable to describe the transport by a simple effective 
diffusivity as supposed in classical models of passive tracers. Moreover, if a diffusivity 
representation is sought, then the spread rate behaviour of the bubble layer demands 
an effective Schmidt number of about unity, a value significantly larger than that 
adopted to reproduce the spread rate behaviour of passive tracers. This aspect is 
considered further in Sene et al. (1993). 

The discrete-vortex method has been demonstrated to provide a versatile basis for 
evaluating the structural-dynamic implications of Auton’s force law for bubble 
motions in unsteady and non-uniform flows with vorticity. Our simulations have 
provided new insight into several key processes governing bubble transport at low 
concentrations and, in particular, how the transport scales on the shear-to-slip velocity 
ratio r a n d  the inertia-to-buoyancy force ratio 17. We caution that the accuracy of the 
results presented here can only be checked by comparison with experimental 
measurements. However, we have demonstrated that they are not very sensitive to 
details of the assumptions made in the discrete-vortex model or the drag law adopted 
for the bubble motions. 
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